Probabilidad condicional: es la probalidad de que ocurra un evento A, sabiendo que también sucede otro evento B. La probabilidad condicional se escribe P(A|B), y se lee «la probabilidad de A dado B».
No tiene por qué haber una relación causal o temporal entre A y B. A puede preceder en el tiempo a B, sucederlo o pueden ocurrir simultáneamente. A puede causar B, viceversa o pueden no tener relación causal. Las relaciones causales o temporales son nociones que no pertenecen al ámbito de la probabilidad. Pueden desempeñar un papel o no dependiendo de la interpretación que se le dé a los eventos.
por ejemplo tomando los casos en los que B se cumple, se puede interpretar como la parte en los que también se cumple A. Si el evento B es, por ejemplo, tener la gripe, y el evento A es tener dolor de cabeza, sería la probabilidad de tener dolor de cabeza cuando se está enfermo de gripe.
Regla de multiplicación de probabilidades
1. Regla de multiplicación de probabilidades
Si se tienen varios eventos sucesivos e independientes entre sí, la probabilidad de que ocurran todos ellos a la vez corresponde a la multiplicación de las probabilidades de cada uno de los eventos.
Ejemplos:
1. Si se responden al azar cuatro preguntas con cinco opciones cada una, ¿cuál es la probabilidad de acertar a todas?
La probabilidad de acierto en cada una de las preguntas es 1/5. Por lo tanto, la probabilidad de acertar en las cuatro es:
2. Suponiendo que la probabilidad de tener un hijo o una hija es ½, ¿cuál es la probabilidad de que al tener tres hijos, 2 solamente sean varones?
Si H representa el nacimiento de un hombre y M el de una mujer, tenemos los siguientes casos favorables: HHM – HMH – MHH
La probabilidad de cada uno de estos eventos es:
El teorema de Bayes
En la teoria de la probabilidad, es una proposición planteada por el filósofo inglés Thomas Bayes (1702-1761)-1 en 1763,-2 que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad de sólo A.
En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir, por ejemplo, que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza. Muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.
No hay comentarios:
Publicar un comentario